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B. Bodermanna, H. Knöckel, and E. Tiemannb

Institut für Quantenoptik, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

Received 17 July 2001 and Received in final form 17 October 2001

Abstract. Based on new systematic high precision measurements of hyperfine splittings in different rovi-
brational bands of 127I2 in the near infrared spectral range between 778 nm and 816 nm, and the data in
the range from 660 nm to 514 nm available from literature, the quantum number dependence of the differ-
ent hyperfine interaction parameters was reinvestigated. As detailed as possible parameters were re-fitted
from the reported hyperfine splittings in literature, considering that the interaction parameters should vary
smoothly with the vibrational and rotational quantum numbers, and follow appropriate physical models.
This type of consistency has not been sufficiently taken into account by other authors. To our knowledge
it is now possible for the first time to separate the hfs contributions of the two electronic states B3Π

0+
u

and X1Σ+
g for optical transitions in a very large wavelength range. New interpolation formulae could be

derived for both states, describing the quantum number dependences of the nuclear electric quadrupole,
of the nuclear spin-rotation and also of the nuclear spin-spin interactions. Using these new interpolation
formulae the hyperfine splittings for the components with the quantum number condition F − J = 0 can
be calculated with an uncertainty of ≤30 kHz for transitions in the wavelength range between 514 nm and
820 nm.

PACS. 33.15.Pw Fine and hyperfine structure – 33.20.Kf Visible spectra

1 Introduction

The iodine spectrum has shown to be a suitable frequency
reference for laser frequency stabilisation from the vis-
ible to the IR spectral region (see references in [1], or
e.g. [2–11]). Because of its rich spectrum and since it is
easy to handle using a simple glass cell, iodine has also
often been applied as a wavelength reference in the visi-
ble. Six of the wavelength standards recommended by the
Comité International des Poids et Mesures (CIPM) for
the realization of the meter [1] are lasers whose frequency
is stabilised to iodine hyperfine components.

Additionally, the internal systematics of the rotational
and vibrational structure of the molecular spectrum offers
the possibility of predicting frequencies of a large number
of transitions using known molecular parameters [12,13].
It has been shown that, at least for a limited spectral
range and by analysing high precision frequency measure-
ments on Doppler-free iodine lines, the interpolation of
transition frequencies can reach a level of accuracy of few
10−9 or better [14,15]. To achieve such a level of predic-
tion accuracy for Doppler-free iodine lines a detailed study
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of the hyperfine structure is necessary, besides a system-
atic determination of the rovibronic molecular structure.
Numerous experimental and theoretical studies on the hy-
perfine structure of molecular iodine have been performed
over the last 30 years [16–37]. Several authors have de-
rived empirical prediction formulae that describe the de-
pendences of the hyperfine structure on the vibrational
and rotational quantum numbers. The most accurate of
these empirical formulae up to now are limited to the vis-
ible spectral range [24].

We performed systematic experimental studies both on
the rovibronic and on the hyperfine structure of 127I2 in
the NIR. Combining these measurements with data avail-
able from literature we were able to separate the contri-
butions of the two electronic states and to derive new and
improved formulae, which allow for an accurate predic-
tion of transition frequencies of iodine lines both for the
visible and the NIR spectral range. While the results con-
cerning the rovibronic structure will be presented in con-
nection with a precise potential determination in a forth-
coming paper, here we present our results on the hyperfine
structure.

After a short introduction to the physical background
of the quantum number dependence of the hyperfine in-
teractions the paper presents our own systematic mea-
surements of the hyperfine structure of iodine lines in the
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near infrared. Then the data from the literature are re-
vised, and interpolation formulae are derived for the rel-
evant interactions. Finally, the accuracy of predictions of
hyperfine splittings from these formulae is discussed.

2 Quantum number dependence of hyperfine
interaction parameters

The hyperfine structure of the iodine molecule is usually
described by an effective Hamiltonian [16]:

Hhfs,eff = HeqQ +HSR +HSS +HTS (1)

where HeqQ, HSR, HSS and HTS represent the (effective)
nuclear electric quadrupole, the nuclear spin-rotation, the
scalar nuclear spin-spin and the tensorial spin-spin inter-
actions. The matrix elements of these terms can be sepa-
rated into a product of different geometrical factors gi and
hyperfine parameters, i.e. eqQ, C, δ and d, respectively:

〈(J ′I ′), F |Hhfs,eff |(JI), F 〉 =
eqQgeqQ + CgSR + δgSS + dgTS. (2)

The gi are functions of appropriate angular momentum
quantum numbers, named conventionally J , I and F , of
the system and can be calculated with spherical tensor
algebra. Expressions for these functions can be found in
Tables Va and Vb of [16] or in [18]. The hyperfine pa-
rameters usually have to be determined experimentally
for the hyperfine structure of each rovibrational transi-
tion. If these constants are derivable from extrapolation
or interpolation for a specific rovibrational level, the hy-
perfine splitting can be calculated. The functional forms
of these effective hyperfine parameters were explicitly de-
rived by Broyer et al. [16] using a perturbation calculation
up to second order. For both the ground state X1Σ+

g and
the exited state B3Π0+

u
of the iodine molecule, that are

Ω = 0 states, these parameters χ(v, J) have the following
structure for a level (v, J) of an electronic state:

χ(v, J) = χ1(v, J) +
∑
p

χ2p

∆EJv,vp
〈v|vp〉 · (3)

Here χ1 is the first order contribution of the discussed
electronic state (B or X) and χ2p are the second order
contributions from the perturbing state p with energy dif-
ference ∆Ev,vp between the levels (v, J) and (vp, J) and
the overlap integral 〈v|vp〉 of the two vibrational states.
This form is a simple approximation where the electronic
matrix element will have only a weak dependence on the
nuclear separation. χ1 is an expectation value of the gener-
ally R-dependent interaction for the specific rovibrational
state (v, J). Thus this part will be represented in the con-
ventional form of a Dunham series in v and J ,

χ1(v, J) =
∑
l,k

χlk1 (v + 1/2)l[J(J + 1)]k (4)

where typically few members of this series are sufficient
for describing a large set of experimental data. The coef-
ficients χlk1 might be related to the potential of the elec-
tronic state, and thus a power expansion of χ with the in-
ternuclear distance R can be derived. This kind of analysis
is performed by Spirko and Blabla [20] for the quadrupole
coupling constant eqQ of I2. For the present purpose we
do not pursue this approach because no improved inter-
polation formulae are expected.

The sum over the perturbing states contains two differ-
ent categories: the first one, where the electronic state is
close by, so that the energy denominator plays an impor-
tant role in the functional form of the parameter, and the
second one, where the perturbing state is so far away that
the whole contribution does not vary significantly with
vp. Then this latter part cannot be distinguished from the
functional form of χ1(v, J). Similar considerations were
already successfully applied by Vigué et al. [17] for ab ini-
tio calculations of CB for higher vibrational states v′. In
iodine the states mainly perturbing the X1Σ+

g have the
same atomic asymptotes as X and are very weakly bound.
Thus the energy denominator can be approximated by
∆EJv,vp ≈ Ev,J −Ep(3/2, 3/2), where Ep is an average of
the perturbing levels and will have a value close to that
of the atomic asymptote 2P3/2 + 2P3/2 of iodine. Under
these conditions the overlap integral 〈v|vp〉 will not vary
strongly with vp, because the part of the wavefunction for
small nuclear separation will almost stay constant while
varying vp up to the dissociation limit. Thus χ2p〈v|vp〉
can also be approximated by a simple and short power
expansion in v and J .

Similarly, we can also approximate the functional form
of the hyperfine parameters of the B state, only the dis-
sociation asymptote is shifted to 2P1/2 + 2P3/2 of iodine,
and we introduce as an average energy for the perturbing
state Ep(1/2, 3/2). In total, we will apply

χ(v, J) =
∑
lk

χlk1 (v + 1/2)l[J(J + 1)]k

+
∑
lk χ

lk
2 (v + 1/2)l[J(J + 1)]k

Ev −E
, (5)

and E stands for Ep(3/2, 3/2) or Ep(1/2, 3/2).
From the derivation [16] of the second order contri-

butions of the scalar and tensorial spin-spin interactions,
i.e. the parameters δ and d, one sees that both are in
close relation, but which depends on the electronic quan-
tum numbers of the perturbing states, where we have to
consider Ωp = 0 and 1. In the former case both differ in
sign, in the latter case by a factor of two. Thus we can use
the following formulae for the two interaction parameters

δ = δ1(v, J) +
δ0
2(v, J)

Ev,J −E
+

δ1
2(v, J)

Ev,J −E
(6)

d = d1(v, J)− δ0
2(v, J)

Ev,J −E
+ (1/2)

δ1
2(v, J)

Ev,J −E
, (7)

where the second term in each equation describes the per-
turbation due to Ω = 0 states and the third term due to
Ω = 1 states.
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Finally, it should be mentioned that by measuring opti-
cal transitions between X and B state usually (for J ≥ 10)
only differences between the hyperfine parameters can be
determined, because the corresponding parameters of the
two states are strongly correlated, if inferred from transi-
tions with selection rules ∆F = ∆J , which is the case for
most of the existing data; fitting spectra one obtains

∆eqQ = eqQB − eqQX
∆C = CB − CX
∆δ = δB − δX
∆d = dB − dX . (8)

3 Measurements in the NIR and fitting
procedure

We measured the hyperfine structure of 45 rovibrational
transitions in the wavelength range between 778 nm and
816 nm. The experimental setup of Doppler-free satura-
tion spectroscopy and the methods for analysing the hy-
perfine structure are described in detail in [8,27]. The hy-
perfine energies were derived from the diagonalization of a
matrix which covers the rotational space J and J±2. The
fits of the hyperfine structure include a line shape analysis
of the measured lines, which permits calculation and cor-
rection of the frequency pulling or pushing due to overlap-
ping profiles of neighbouring hyperfine components. The
data and analysis of the (0–15) band (14 rotational lines)
was already published in [27]. Typical spectral structures
of the hyperfine interaction in iodine are published in
many papers, e.g. in [27]. Thus we omit them here. With
the exception of the transition P(1) (v′−v′′) = (0–14) (see
below) from the 31 new measurements only differences of
the hyperfine parameter according to equations (8) can
be derived, because J ′′ > 16. For this reason, the ground
state parameters eqQX , CX , δX and dX were set to plau-
sible values (see below) and kept fixed, but the B state
parameters eqQB, CB , δB and dB were fitted. In this way
small influences of the separated parameters of X and B
(because the parameters of the states are not correlated to
100%) could be included with sufficient accuracy and from
the fit results and the fixed constants the true differences
∆eqQ, ∆C, ∆δ and ∆d were calculated.

For some transitions only few hyperfine components
have been measured for experimental reasons, so that a
determination of all four parameters was not possible. In
these cases only eqQB and/or CB have been fitted and
the other parameters were set to fixed values, which were
obtained in an iterative process from the fit of all measured
bands and by application of the interpolation formulae at
each iteration step.

The frequency of a specific hyperfine component de-
pends differently on the individual hyperfine parameters.
As an example, the energy splitting of the F − J = 0
(where F is the total angular momentum including nuclear
spin) components is nearly independent of the C parame-
ter. Therefore, it depends on the kind of the measured hy-
perfine components and on the quantum numbers of these

components, whether a hyperfine parameter can reliably
be derived from the measurement or not. As an example,
for the R(138) 1–14 transition, where only the F − J = 0
components a1, a10 and a15 (the hyperfine components are
numbered from 1 to 15 for even J ′′ and from 1 to 21 for
odd J ′′ in increasing order of energy) have been measured,
only eqQB was determined. For the R(139) 1–14 line in
contrast the components a12, a13 and a14 were measured,
whose hyperfine splitting is more suited for a determi-
nation of CB . The measured lines, which have generally
high vibrational levels for X (v′′ = 12 to 17) and low for
B (v′ = 0 to 3), are listed in Table 1.

4 Determination of hyperfine parameters

The derivation of the hyperfine parameters consists of sev-
eral iterations, which will be explained in detail to show
the consistency of this approach. The first step aims to
split off the weakest contributions, i.e. the spin-spin in-
teraction by δ and d, for which only low accuracy can be
expected and their influence on the other parameters will
be negligible.

For the 0–15 band in earlier investigations no signif-
icant rotational dependence of the spin-spin parameters
δ and d was inferred [27]. For five transitions of the 0–14
band and for the transitions R(180) 0–16 and R(188) 0–13
these parameters were obtained with significance. Because
we consider transitions with ground state vibrational lev-
els v′′, of which the energetic distance to possible per-
turbing states is larger than 8 000 cm−1, we expect the
variation of δX and dX with v′′ to be negligible. So the
variation of ∆δ and ∆d is attributed to their dependence
on v′. The variations with J ′ of ∆δ and ∆d of the newly
measured transitions sharing the common upper vibra-
tional level v′ = 0 and of the 0–15 band were examined
thoroughly. While for ∆d no significant dependence on
J ′ can be detected, for ∆δ the values for very high J ′

(J > 180) seem to decrease (see Tab. 1). But considering
the relatively large uncertainties of these values, the in-
terrelation between δ and d, and the missing tendency for
∆d we believe this decrease to be of no significance. Thus
we calculate weighted averages and find:

∆δ = 10.3(30) kHz, ∆d = −4.3(5) kHz. (9)

These results are in very good agreement with our ear-
lier results of the 0–15 band alone, where we found ∆δ =
10.4(5) kHz and ∆d = −4.4(6) kHz [27]. New fits were run
with these parameters fixed to the averages, varying only
eqQB and CB . The results for all lines in the near infrared
are listed in Table 1. It shows in the fourth and fifth col-
umn the number of measured hyperfine components and
the obtained standard deviation of the fits. The latter was
always close to the experimental measurement error.

These results will be used to separate the contribu-
tions of the two electronic states by their different quan-
tum number functions in v′′, J ′′ and v′, J ′, respectively.
Figure 1 shows all derived ∆C as a function of J(J + 1).
First, one recognizes that all results for v′ = 0 concentrate
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Table 1. Hyperfine parameters derived from measurements of iodine lines in the near infrared. The numbers of decimal places
given are due to usage in the fit.

transition ∆eqQ [MHz] ∆C [kHz] no. of comp. std. dev. [kHz]

R(240) 0–12 1 960.696(32) 19.972(10) 11 26.5

P(164) 0–13 1 961.492(50) 19.0841 3 2.5

R(188) 0–13 1 961.021(27) 19.241(13) 152 19.7

P(1) 0–14 −2 450.45(11)4 18.1581 94 21.6

R(16) 0–14 1 961.880(43) 18.1581 5 17.9

R(18) 0–14 1 961.859(47) 18.1581 6 18.3

P(31) 0–14 1 961.554(501) 18.096(327) 4 35

R(56) 0–14 1 961.695(62) 18.364(91) 9 42

P(70) 0–14 1 961.664(17) 18.343(27) 7 11.1

R(78) 0–14 1 961.556(6) 18.401(25) 11 3.2

P(87) 0–14 1 961.548(16) 18.407(8) 17 6.6

R(96) 0–14 1 961.429(15) 18.487(16) 7 5.4

P(166) 0–14 1 960.580(90) 19.0591 2 -

R(174) 0–14 1 960.385(42) 19.028(11) 15 23.4

R(205) 0–14 1 959.672(25) 19.354(5) 19 21.8

R(138) 1–14 1 958.905(50) 19.6613 3 6.7

R(139) 1–14 1 958.9053 19.661(9) 3 7.2

P(148) 1–14 1 958.884(28) 19.709(53) 7 10.9

P(228) 1–14 1 957.233(152) 20.599(39) 5 14.3

R(0) 0–15 −489.290(580)5 18.1251 6 229.7

P(1) 0–15 −2 449.7(4)4 18.1251 7 48.3

P(7) 0–15 1 960.590(100) 18.1281 18 96.5

R(8) 0–15 1 960.920(120) 18.1281 13 71.2

R(9) 0–15 1 960.950(130) 18.1281 17 134.8

R(10) 0–15 1 960.760(100) 18.1291 13 55.5

R(16) 0–15 1 960.760(60) 18.1341 12 38.4

R(19) 0–15 1 961.151(137) 18.1381 2 -

R(39) 0–15 1 960.860(20) 18.218(29) 21 23.4

P(61) 0–15 1 960.780(30) 18.236(21) 19 19.2

P(79) 0–15 1 960.750(20) 18.327(12) 21 20.4

R(92) 0–15 1 960.550(30) 18.404(14) 11 5

P(94) 0–15 1 960.510(30) 18.384(10) 11 5

R(96) 0–15 1 960.537(49) 18.419(25) 11 7.2

R(99) 0–15 1 960.450(20) 18.418(12) 18 15.6

P(104) 0–15 1 960.517(13) 18.433(5) 9 2.3

P(105) 0–15 1 960.475(10) 18.422(9) 6 2

R(113) 0–15 1 960.315(18) 18.532(12) 5 10.4

P(239) 0–15 1 957.511(43) 19.745(37) 9 33.7

R(117) 2–15 1 956.465(149) 20.282(46) 14 25

P(172) 0–16 1 958.206(148) 19.0291 2 -

R(180) 0–16 1 958.028(25) 18.972(13) 9 18.3

P(43) 3–16 1 954.287(53) 20.459(59) 212 18.9

P(34) 0–17 1 958.986(63) 18.0631 3 4

R(42) 0–17 1 958.831(57) 18.085(98) 11 18.4

R(44) 0–17 1 958.900(115) 18.0941 2 -

1Not fitted, averaged values from equations (10–13) for ∆C, ∆δ and ∆d, 2hyperfine pattern partly overlapped by other lines,
3combined analysis of R(139) and R(138) because of specific hyperfine components, 4eqQX separately, 5eqQB separately.
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Fig. 1. Rotational dependence of ∆C. Solid line belongs to
v′ = 0 bands.

around one single line, and the few other measurement
points can be ordered by parallel shifting this line to the
groups for v′ = 1, v′ = 2, and v′ = 3 (example dotted line
for v′ = 1). Thus this diagram clearly directs us, that the
main variation of ∆C with quantum numbers is related
to the dependence on the excited state. Only the large
set of data for v′ = 0 and several different v′′ (from 12
to 17) indicates a trend that CX increases slightly with
increasing v′′.

This characteristic behaviour is qualitatively as ex-
pected, because the vibrational levels of the B state are
much closer to perturbing levels of Ω = 1 than those of
the X state. These observations will be embedded in the
overall analysis of the variation of ∆C and separately of
CX and CB in Section 6.1.

Figure 2 shows an overview of ∆eqQ as a function of
the rotational energy, together with curves derived from
first fits to equations (14, 15) to guide the eyes. As stated
above for high rotational quantum numbers (J > 10) it
is very difficult to derive separate hyperfine parameters of
the electronic states from optical transitions. But differ-
ences in trends due to quantum numbers can already be
observed. In Figure 2 we can read off the order of variation
in the ground state when we take the separation of the line
for the band (0–12) and for band (0–13), which is roughly
−1 MHz (arrow a), consistent also with the observations
from the P(1) lines (see below). For the excited state we
obtain from the line separation between band (0–14) and
(1−14) − 2 MHz and similarly for the large separation
of the other bands, indicated by arrows b. Thus, eqQ of
the X state increases with increasing vibrational quantum
number, but it decreases in the case of the B state.

For transitions P(1), however, we have J ′ = 0 and
therefore the hyperfine structure of these transitions is
nearly completely determined by the hyperfine parameters
of the ground state. (An analogous statement is true for
transitions R(0), where the hyperfine structure is nearly
completely determined by the hyperfine parameters of the

Fig. 2. Measured ∆eqQ of near infrared lines as function of the
rotational energy. Solid lines belong to v′ = 0 bands, vertical
arrows: “a” marks variation in v′′, “b” variation in v′.

B state.) Unfortunately, due to the small thermal popula-
tion of states with such low J ′′ the signal-to-noise ratio for
these transitions usually is very low. This is even more se-
vere for NIR transitions, where the cells have to be heated
to several 100 ◦C, than for transitions in the visible. Nev-
ertheless, in [27] we already presented a measurement of
the P(1) 0–15, which allowed us to determine a value of
−2 449.7(4) MHz for eqQX(v′′ = 15). Now we were suc-
cessful in measuring the P(1) 0–14 transition with even
an improved signal-to-noise ratio. Despite this improve-
ment of the S/N , a determination of CX , δX and dX for
this transition is still not possible, because the contribu-
tions by these magnetic interactions are very small for
low J levels. Additionally, from the 9 measured hyper-
fine components of our present measurement only 4 can
be attributed to not blended lines. We obtain a value of
eqQX = −2 450.45(11) MHz, which gives an independent
measure of the variation of the quadrupüole interaction in
the ground state.

5 Analysis of all data available on 127I2

from literature

The data available in literature were revised, and some
inconsistencies were found, which lead to unphysical vari-
ations of the hyperfine parameters from one level to an-
other. The reason seems to be the evaluation methods
applied by the different authors.

We decided to re-analyse the whole available data us-
ing our methods in order to obtain highly consistent values
for the hyperfine parameters. In some cases only the fitted
hyperfine parameters were published, so that a new anal-
ysis was not possible. In these cases we used the published
values [30,31,37].
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Table 2. Hyperfine parameters for the X state from literature.

level v′′, J ′′ eqQX [MHz] CX [kHz] δX [kHz] dX [kHz] source

83, 13 −1 554.6(5) 62.6(50) 01 01 [30]

81, 13 −1 629(3) - - - [33]

79, 13 −1 692(1) - - - [33]

76, 13 −1 781(2) 28(4) 01 01 [31]

62, 13 −2 128(1) - - - [33]

11, 13 −2 455(2) 7.9(10) 01 01 [32]

1, 0–10 −2 459.9(32) 01 01 01 [37]

0, 0–6 −2 451.3(35) 01 01 01 [29]

0, 15 −2 452.59699(45) 3.1543(29) 3.701(23) 1.519(18) [26]

0, 13 −2 452.58514(45) 3.1536(33) 3.708(22) 1.528(18) [26]

−2 452.5837(16) 3.162(8) 3.66(3) 1.58(5) [25]

0, 54 −2 453.088(24) 2.904(40) 3.705 1.524 [4]

0, 56 −2 453.132(11) 3.306(21) 3.705 1.524 [4]

1Values fixed to zero during their fit by corresponding authors.

Table 3. Hyperfine parameters for the B state, mainly from literature.

level v′, J ′ eqQB [MHz] CB [kHz] δB [kHz] dB [kHz] source

62, 27 −569.132(35) 938.739(78) 565.98(226) −410.71(205) [2]

43, 12 −558.617(3) 190.315(10) 0.30(3) −99.9(1) [2,19]

32, 58 −544.772(40)1 - - - [4]

32, 57 −544.751(11) 89.656(21) −6.943(86) −42.701(78) [4]

32, 53 −544.656(24) 89.004(41) −7.04(12) −42.54(11) [4]

26, 13 −534.842(20) 62.099(62) −5.56(83) −27.14(74) [1,41]2

13, 0–10 −510.3(42) 32.5(6) −30.2(23) −9.9(16) [37]

12, 0–6 −509.9(15) 49(11) 03 03 [29]

1From extrapolation in [4], 2new fit from combined data of corresponding papers (std. dev. 5 kHz) X state values from [4]
(R(13)), 3values fixed to zero.

As far as hyperfine splittings of a transition had been
measured by more than one author, we used weighted av-
erages of their frequencies for our fits.

The fitting procedure for the hyperfine structure is al-
ready described above and in detail in [8,27]. For a calcula-
tion and correction of the frequency pulling or pushing due
to overlapping profiles of neighbouring hyperfine compo-
nents we used the experimental lineshapes of the hyperfine
lines. In cases, where line profile data were not published,
we estimated these parameters from the linewidth of the
laser emission, iodine pressure, predissociation rate, and
from the kind of modulation technique used for detection.
To our knowledge, the data of Gill et al. [28] for the transi-
tions R(98) 43–2 and 27–3 were never analysed before. The
reanalysis was done iteratively in several steps. Initially all
data were fitted in the same way. For the ground state we
used the values for v′′ = 0, J ′′ = 13 obtained by Yokozeki
et al. [25]: eqQX = −2 452.584 MHz, CX = 3.162 kHz,
δX = 3.66 kHz and dX = 1.58 kHz. This choice is arbi-
trary, but doesn’t make any problem as long as the fit is
only sensitive to the differences between the parameters
of both states (see discussion in Sect. 3). The values were
kept fixed during the fits. For most of the data in this it-
eration all four parameters eqQB, CB, δB and dB were fit-

ted, and from these and the above mentioned ground state
values differences of hyperfine parameters were calculated
as the final result. For those transitions, where the exper-
imental errors of the measurements are relatively large,
the spin-spin parameters turned out to be not significant.
These transitions were re-analysed in a second step setting
the parameters δB and dB to the values obtained by the
formulae derived below (Eqs. (12, 13)) and varying only
C and eqQ. In other cases too few lines are known, so that
even C was fixed using the formulae below and only eqQ
was fitted.

For a reliable separation of the quantum number de-
pendence of the hyperfine parameters of either electronic
state the parameters of one of the states must be known
as absolute values. An overview of such derived values for
both states is listed in Tables 2 and 3. They were obtained
either by measurements of transitions with low angular
momentum J [2,19,24,27,29,37], or stimulated Raman
two-photon transitions [26,30–32] or using a molecular
beam Rabi-type setup [25], or measuring cross-over res-
onances in saturation spectroscopy [4].

For a long time the parameters obtained by Yokozeki
and Muenter [25] for v′′ = 0, J ′′ = 13 were mostly ac-
cepted for the ground state. Recently, Wallerand et al. [26]
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Table 4. New evaluation of hyperfine parameters from published spectra. For P(84) 33–0 the fit was adopted from the original
reference [3].

transition ∆eqQ [MHz] ∆C [kHz] ∆δ [kHz] ∆d [kHz] source std. dev. [kHz]

R(26) 62–0 1 883.453(10) 935.563(22) 562.51(63) −412.56 (57) [2] 18

R(98) 58–1 1 880.100(16) 829.136(8) 355.77(76) −502.03(78) [1] 29

R(15) 43–0 1 893.951(8) 187.368(26) −3.05(40) −102.04(46) [1] 1.3

P(13) 43–0 1 893.968(4) 187.140(6) −3.18(21) −101.78(23) [1] 0.59

R(98) 43–2 1 894.375(80) 208.743(63) −2.611 −102.52 [28] 66

R(134) 36–0 1 902.209(18) 128.696(7) −7.8(13) −67.5(19) [1] 4

R(122) 35–0 1 903.759(2) 116.101(1) −9.45(13) −60.29(12) [4] 0.82

P(119) 35–0 1 903.888(3) 114.955(1) −9.215(2) −59.847(25) [1] 1.2

R(106) 34–0 1 905.290(4) 104.829(2) −9.88(25) −54.08(23) [1] 0.86

R(86) 33–0 1 906.838(4) 95.037(3) −10.32(26) −48.86(23) [1] 0.81

P(84) 33–0 1 906.911(2) 94.582(2) −10.51(13) −48.59(12) [3] 0.61 ([3])

P(83) 33–0 1 906.928(7) 94.485(4) −10.17(43) −49.40(52) [1] 1.9

R(57) 32–0 1 908.380(2) 86.413(2) −10.32(10) −44.39(12) [1] 0.61

R(56) 32–0 1 908.381(2) 86.347(2) −10.64(13) −44.24(12) [4] 0.76

P(54) 32–0 1 908.433(2) 86.105(2) −10.78(13) −44.12(12) [4] 0.47

P(53) 32–0 1 908.455(11) 86.026(13) −10.71(91) −44.46(99) [1] 3.5

R(106) 28–0 1 914.429(16) 70.267(8) −8.0(11) −34.6(10) [1] 3.7

P(133) 27–3 1 917.04(81) 68.081(73) −6.41 −33.42 [28] 104

R(12) 26–0 1 917.731(40) 58.908(81) −8.7(20) −28.9(19) [1] 5

P(62) 17–1 1 933.335(47) 37.379(35) −1.1(4) −19.7(17) [1] 62

R(34) 17–6 1 934.073(21) 37.02(63) −0.2(35) −14.2(15) [19] 16

R(48) 15–5 1 937.532(61) 33.471(99) −2.51 −16.802 [1] 29

P(62) 11–2 1 944.71(70) 28.194 −10.331 −18.092 [40] 820

P(48) 11–3 1 944.639(52) 27.505(40) −12.3(25) −20.34(91) [1] 1.7

R(127) 11–5 1 944.656(15) 28.389(5) −15.19(30) −20.74(33) [1] 8.5

R(161) 9–0 1 947.95(23) 26.987(50) −16.51 −19.82 [40] 271

R(47) 9–2 1 948.006(20) 25.153(6) −15.60(26) −19.70(34) [1] 2.3

R(16) 8–5 1 950.110(71) 22.7713 −14.91 −18.42 [1] 17

P(10) 8–5 1 950.62(27) 24.766 −14.91 −18.42 [1] 103

R(39) 7–4 1 951.883(92) 23.319(84) −12.1(4.1) −16.3(63) [7] 63

P(33) 6–3 1 953.698(10) 22.606(30) −6.67(67) −13.42(83) [1,9–11] 4.6

P(84) 5–5 1 955.9(13) 22.0(15) −2.11 −10.62 [21] 519

R(69) 3–4 1 960.53(99) 21.6(11) 5.81 −6.02 [21] 612

1∆δ from equation (12), fixed in fit of hyperfine structure, 2∆d from equation (13), fixed in fit of hyperfine structure, 3∆C from
equations (10, 11) and fixed in the fit of the hyperfine structure.

succeded in measuring the same levels with improved ac-
curacy, using a Raman setup, and confirmed the values
by [25] within the limits of the earlier uncertainty. Recent
results from [4] fix the parameters for v′′ = 0, J ′′ = 54
and 56, and the rotational dependence of eqQX could be
well established for v′′ = 0.

Since the transitions v′ = 43, J ′ = 12 − v′′ = (11,
62, 76, 79, 81, 83), J ′′ = 13 were measured [30–33], with
the common level v′ = 43, J ′ = 12 known from [1,2], the
eqQX parameter for these levels could be derived. But the
values for eqQX published by Koffend et al. [30,33] refer
to an older determination of eqQX(v′′ = 0, J ′′ = 13) [34].
So we corrected these values using the results of Yokozeki
et al. [25]. Unfortunately, for the measurements by Hackel
et al. [32] the reference was not reported, so that a correc-

tion of this value is not possible, and this value was not
used in deriving the interpolation formulae.

Also the extensive data sets obtained by Pique
et al. [18,35] and by Bacis et al. [36] on the exited vi-
brational levels of the X (v′′ ≥ 26) and of the B state
(v′′ ≥ 61) were considered. These data are very useful for
an identification of the distortions due to hyperfine mix-
ing with other electronic states, since these distortions in-
crease rapidly, when approaching the dissociation limit of
the considered state. But they were not included in the
fits and therefore are not mentioned in the tables.

The results of our fits of parameter differences are
shown in Table 4. The transitions, where extrapolated val-
ues for parameters have been used, are clearly marked.
In most cases the fits are of improved or equal quality
as compared to the report in the corresponding paper.
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The improvements are probably a result of the corrections
of frequency pulling or pushing due to overlapping lines.
For a consistent fit of the transition R(161) 9–0 [40] we
omitted the measured value for the hyperfine component
a7. The deviation between the calculated value from the
new fit and the measured one for a7 is very close to exactly
1 MHz, thus indicating a possible typing error. Only for
the transitions R(134) 34–0 and R(48) 15–5 the standard
deviations of the fits are slightly larger than the results
collected in [23].

6 Evaluation of the quantum number
dependence of the hyperfine parameters
and new interpolation formulae

In the formulae derived in this section for the different
hyperfine interactions the individual parameter values are
given without uncertainties, because of significant corre-
lations between the parameters. The number of decimal
places given is chosen for precise reproduction of the hy-
perfine parameters. The limits of uncertainty for the ef-
fective hyperfine interactions are discussed in Section 7.

6.1 Quantum number dependence of CX and CB

For the nuclear spin-rotation parameters CX and CB we
expect a hyperbolic dependence on the vibrational en-
ergy E(v) of X or B due to the perturbing states sharing
the same asymptote as the state considered, according to
equation (5).

The values for CX presently known are listed in the
third column of Table 2. There are determinations for
the highly exited vibrational levels v′′ = 76 [31] and
v′′ = 83 [30]. For v′′ = 11 there is a value from [32], but the
most precise ones exist for v′′ = 0. We already explained
above, that from our measurements in the near infrared
CX was found to vary slightly for low v′′ in the interval
(12 ≤ v′′ ≤ 17), but a derivation of independent values
for CX was not directly possible, because of the high J
measured.

The values of CX of v′′ = 0, 76 and 83 were taken
together with differences of∆C with common B level from
the NIR data, and the model of equation (5) was applied in
a nonlinear fit. The value of v′′ = 11 [32] always deviated
strongly in preliminary fits, so it was omitted in the final
runs. Also there seems to be a problem with the two values
CX for J ′′ = 54 and J ′′ = 56 in v′′ = 0, which differ
by more than 10% from each other, without any obvious
physical reason. Recent results by Bordé yield a constant
CX for v′′ = 0 [42]. Thus, data of [4] were not included in
the fit.

The fit was iterated, first taking the absolute values
for the ground state from Table 2, then adding those NIR
data with common v′ = 0 (assuming linear dependence of
CB for v′ = 0 in J ′(J ′ + 1), which is confirmed below)
in order to determine the parameters for the ground state
first. It turns out that a linear term in the vibrational

quantum number is sufficient to describe the whole series
appropriately. The averaged energy E of perturbing levels
was also varied. This gives a slightly better fit for the two
values at high vibrational quantum numbers. Any rota-
tional dependence is not significant in the data and was
therefore omitted. As a result CX is represented by:

CX [kHz] = 1.9245 + 0.01356(v′′ + 1/2)

− 15 098
E(v′′)[cm−1]− 12 340

· (10)

E(v′′) is the energy of the vibrational level (v′′, J ′′ = 0),
referred to the lowest vibrational level (v′′ = 0, J ′′ = 0),
E(v′′) = GX(v′′) −GX(v′′ = 0), which can be found tab-
ulated in sufficient precision in [13]. According to this re-
sult we calculate for the vibrational levels v′′ = 12 to
v′′ = 17 values from 3.63 kHz to 3.86 kHz, which can be
used later on to derive separate values of CB from the NIR
data set.

Then the parameters for the ground state were fixed
and all other data were included to fit the parameters CB
and∆C for the excited state. Inspection of Table 4 shows a
large variation of ∆C approaching the dissociation limit of
the B state. For parity electronic reasons only a coupling
with 1u states contributes to the effective spin-rotation
interaction in the B state. Two different 1u states share
the same dissociation limit (2P1/2−2P3/2) as the B state.
It is known from the work by Pique et al. [18], that both
1u states couple to the B state, and that in the vicinity of
the dissociation limit significant contributions to CB are
due to these states. To avoid the complication with the
two different perturbing states at the asymptote, for which
detailed information is missing, we restricted the fit to the
experimental data with v′ ≤ 43 or E(v) ≤ 19 500 cm−1, to
keep the distance to the perturbing states large enough,
so that one effective interaction according to equation (5)
is appropriate. In this manner we obtained:

CB [kHz] = −4.016− 0.1501(v′ + 1/2)
−(3.957× 10−4)J ′(J ′ + 1)
−1.767× 10−5(v′ + 1/2)J ′(J ′ + 1)

−110 704 + 1.862J ′(J ′ + 1)
E(v′)[cm−1]− 19 986

· (11)

E(v′) is the energy of the vibrational level (v′, J ′ = 0),
again referred to the lowest vibrational level (v′′ = 0,
J ′′ = 0), E(v′) = GB(v′) − GX(v′′ = 0) and is tabu-
lated e.g. in [13]. To account for the strong increase of CB
in the range v′ >43 E was used as an effective parameter
and adjusted by the fit. Finally, the parameters CX and
∆C of the ground state were adjusted again while keep-
ing those of the excited state fixed, and then the same for
CB and ∆C, until no further improvement was achieved.
Equations (10, 11) already show the final result.

For a quantitative comparison with former approaches
we calculated the values of CB using the formulae pro-
posed by Razet et al. [24] (formula (10b)) and by Arie
et al. [22] (formula (3)). Figure 3 shows the differences be-
tween experimental values and the values calculated with



B. Bodermann et al.: Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum 39

Fig. 3. Comparison of prediction formulae for ∆C.

equations (10, 11) (squares), using the approach by Arie
et al. (circles) and using the approach by Razet et al. (tri-
angles). A satisfying description of the NIR data (between
16 000 cm−1 and 17 000 cm−1 in Figure 3 is only obtained
by equations (10, 11). The values calculated by the ap-
proach of Arie et al. for these transitions are systemati-
cally about 3 kHz too small, and the deviation increases
slightly for transitions with higher J ′. The values obtained
from the Razet formula are generally too big for the NIR
transitions (triangles to lower part of Fig. 3); the devia-
tions are about 6 kHz for small J ′, but increase rapidly
with increasing J ′. Obviously, the description of the ro-
tational dependence of ∆C given by the Razet formula
is inadequate for the NIR data. The description of the
data with v′ > 2 is also significantly improved using equa-
tions (10, 11). For the formulae by Arie et al. and Razet
et al. an increase of the deviations is observed in the energy
range around 19 500 cm−1, corresponding to v′ from 32 to
36 and higher J ′ (see Fig. 3), but these formulae describe
the experimental values derived for v′ = 43 [2]. All these
deviations are much reduced using equations (10, 11). The
maximum deviation between calculated and measured val-
ues is less than 2 kHz, the rms deviation is 0.5 kHz. The
maximum deviation is more than 23 kHz for the formula
by Razet et al. (out of scale in Fig. 3) and about 15 kHz
for the formula by Arie et al.

6.2 Nuclear spin-spin interactions

From equations (6, 7) it is obvious, that the spin-spin in-
teraction parameters are not independent of each other.
Therefore, a common description of the quantum num-
ber dependence of these parameters is reasonable. Ab-
solute values for the ground state parameters δX and
dX are known for the levels v′′ = 0, J ′′ = 13 and
J ′′ = 15 [25,26]. However, for the ground state levels of
interest here (v′′ ≤ 17) the variations of these parameters

Fig. 4. (a) ∆δ and (b)∆d as functions of E(v′), the vibrational
energy in the excited state. Values for v′ = 58 and 62 above
19 500 cm−1 are out of scale.

are expected to be of comparable relative magnitude as
the variation of CX , which will be then within the experi-
mental uncertainties for ∆δ and ∆d. So it is reasonable to
assume constant values for the ground state and attribute
all variations to the excited state. We took the averaged
values for δX (3.705 kHz) and dX (1.524 kHz) from [26]
for v′′ = 0, J ′′ = 13 for all levels v′′ ≤ 17. ∆δ and ∆d are
shown in Figure 4 as functions of the energy in the excited
state E(v′). The strong increase of these parameters ap-
proaching the dissociation limit is again due to the signifi-
cant hyperfine mixing of the B state with electronic states
sharing the same dissociation limit (2P3/2 + 2P1/2). Ac-
cording to the results of Pique et al. [18] four other states
(1′g, 1′′g , 0−g , 0−u ) couple to the B state, in addition to the
two states 1′u and 1′′u already mentioned. Since states with
different symmetry (even-odd) contribute to the spin-spin
interaction with opposite sign (see Sect. 2), these contribu-
tions partly compensate each other. Because of the differ-
ent signs of δB and dB for E(v′) > 19 500 cm−1 (v′ ≤ 43)
the dominant contributions to the spin-spin interaction in
the asymptotic range are due to an effective 0g state. So
one could try to describe this global tendency for these
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parameters using equations (6, 7) with δ1
2(v′, J ′) = 0.

The values of δB vanish at E(v′) ≈ 19 500 cm−1, while
dB(19 500 cm−1) ≈ 100 kHz. This indicates, that for lower
v′ the influence due to 1u states is important, leading to
a compensation of δB at E(v′) ≈ 19 500 cm−1, and for
dB the contributions due to both the 1u states and the
0−g states have negative sign, so that no compensation
occurs.

Additionally, in the range 16 000 cm−1 ≤ E(v′) ≤
17 700 cm−1 a modulation for dB and δB is visible, indi-
cating a local perturbation due to a crossing state. From
investigations on the predissociation of the B state a weak
gyroscopic and magnetic dipole coupling between the B
state and a 1u state crossing the B state near level v′ = 5
(≈16 400 cm−1) [38,39] is known.

This coupling induces a shift of the levels of the
B state. A qualitative estimate of the level shift with the
help of the observed Franck-Condon density in the predis-
sociation analysis [38,39] compares quite well to the mod-
ulations observed in the curves for dB and δB, indicating,
that these modulations are caused by the weak magnetic
dipole coupling of the 1u and the B state.

However, for CB such a modulation was not observed,
which shows, that the gyroscopic coupling is much weaker
than the magnetic dipole coupling between these two
states. This result is consistent with the predissociation
rates measured by Vigué et al. [38], which are about three
orders of magnitude smaller for the gyroscopic predissoci-
ation than for the hyperfine predissociation.

For a highly precise description of dB and δB a Gaus-
sian function term was added to the equations (6, 7) char-
acterizing the local maximum of the frequency shifts. This
modification allows to simultaneously fit the data for dB
and δB for E(v′) < 19 500 cm−1. We fitted the values
given in Tables 3 and 4 both for δ, ∆δ and for d and ∆d.
The results are:

∆δ[kHz] = 31.57− 32 452
E(v′)[cm−1]− 19 896

+
126 257

E(v′)[cm−1]− 20 687

−22.41 exp
(
− (E(v′)[cm−1]− 16 787)2

260 267

)
(12)

∆d[kHz] = 19.56 +
32 452

E(v′)[cm−1]− 19 896

+
1
2

{
126 257

E(v′)[cm−1]− 20 687

−22.41 exp
(
− (E(v′)[cm−1]−16 787)2

260 267

)}
·(13)

The standard deviation of the fit is 2 kHz. The resulting
curves for ∆d and ∆δ are shown in Figure 4 as full lines.
Equations (12, 13) represent the spin-spin parameters for
E(v′) < 19 500 cm−1 (v′ ≤ 43). The B state parameters
δB and dB are obtained from equations (12, 13) by adding
3.705 kHz and 1.524 kHz, respectively.

For the intermediate range 43 < v′ < 70 a precise
description of the spin-spin parameters is more difficult

because a better knowledge of the different perturbing
states and much more precise experimental data would be
needed. For the asymptotic range v′ > 70 Pique et al. [18]
already investigated dB(E(v′)) and δB(E(v′)) in detail.

6.3 Nuclear electric quadrupole interaction

The above results for the magnetic hyperfine interactions
permit an estimation of the contributions of the second or-
der terms to the effective eqQ parameters according to the
analyses of [16,18]. They are of the order of experimental
accuracy for levels v′ ≤ 43 of the B state and even smaller
for v′′ ≤ 17 of the X state. Thus such contributions will
not influence the global quantum number dependence of
the nuclear quadrupole coupling parameter in the above
range.

For a description of the quantum number dependence
of eqQ we fitted the experimental values for eqQB, eqQX
and ∆eqQ using a power series according to equation (4)
both for the B and the X state simultaneously. Good re-
sults were achieved using 11 fit parameters in total. For
the vibrational dependences both of eqQB and eqQX three
parameters were necessary. The rotational dependences of
eqQB and eqQX are well described using three and two
parameters, respectively. The fit is based on the measured
values given in Table 1, the values from [4,25,26] of 2, and
all values of Tables 3 and 4 with v′ ≤ 43, and it gives a
1σ standard deviation of 5 kHz.

The results for eqQB(v′, J ′) and eqQX(v′′, J ′′) are
summarized in the following equations:

eqQX [MHz] = −2 452.2916− 0.542(v′′ + 1/2)
+0.4534× 10−1(v′′ + 1/2)2

−0.1927× 10−3J ′′(J” + 1)
+0.694× 10−5(v′′ + 1/2)J ′′(J ′′ + 1) (14)

eqQB[MHz] = −487.879− 1.8621(v′ + 1/2)
+0.12511× 10−3(v′ + 1/2)3

−0.1281× 10−3J ′(J ′ + 1)
−0.225× 10−5(v′ + 1/2)J ′(J ′ + 1)
−0.308× 10−9[J ′(J ′ + 1)]2. (15)

The fit shows low correlations between the set of vibra-
tional expansion parameters of the X state and that of
the B state. Therefore, the functions for eqQX(v′′) and
eqQB(v′) describe the vibrational dependences of these
parameters quite independently. This is not necessarily
true for the rotational dependences. Figure 5 shows the
residuals of the fit. The agreement between measured and
calculated values is mostly within the experimental errors.
For few values the deviation obs-cal is somewhat greater
than the corresponding uncertainty. Some are lines with
low J ′′ ≤ 16, and unrecognized lineshifts caused by weak
cross-overs overlapping normal lines might be a reason for
an underestimated uncertainty.

If formula (14) is reduced to v′′ = 0, it is close to the
formula given in [4] for the rotational dependence of eqQX
for v′′ = 0. A comparison of eqQX calculated from both
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Fig. 5. Residuals of the fit of eqQX , eqQB and ∆eqQ to
demonstrate the quality of the fit.

formulae in the interval 0 < J ′′ < 60 yields a maximum
difference of 25 kHz, well within the present prediction
uncertainty. But the present formula also describes the
rotational dependence in the higher vibrational levels of
the ground state quite accurately, the 2σ prediction un-
certainty for eqQX is less than 50 kHz in the range from
v′′ = 12 to v′′ = 17 for J ′′ ≤ 200.

Calculating eqQX (v′′ = 11, J ′′ = 13) from these
formulae, however, we obtain a difference of 2.5 MHz to
the experimental value, slightly above the reported uncer-
tainty. The experimental value of eqQX(v′ = 11) (which
was not included in the fit) by Hackel et al. [32] was de-
rived from the measured transition P(13) 43–11, but, as
already mentioned above, it is not clear to which value for
eqQB (v′ = 43, J ′ = 12) this result refers. So it might be
shifted systematically due to a different parameter used
for the upper state as compared to that used in this work.

Also the determination of eqQX by Wakasugi et al. [37]
is about 7 MHz below the calculated value. The experi-
mental value (also omitted from the fit) is derived from
the measured hyperfine splitting of the band head of the
13–1 band (J ′′ = 0–10). The corresponding value for
eqQB(v′ = 13), derived from the same measurements, also
shows the greatest deviation from the calculated value.
Due to the low signal-to-noise ratio and the strong over-
lapping transitions typically observed in band heads, and
because of the large shift between their experimental value
for eqQX and the very precisely known value for v′′ = 0,
the errors estimated for this measurement are probably to
small. Additionally, the values of eqQ derived in [37] for
the different lines R(0) to R(10) and P(1) to P(5) of the
same band vary by more than 10 MHz.

As already pointed out in Section 2, the quantum
number dependences of the effective eqQ parameters are
dominated by the dependence of eqQ on the nuclear dis-
tance R. A description of the dependences of eq(R)QB
and eq(R)QX on R would allow for a determination of
the R-dependence of the projection of the electrical field
gradient q(R), and one might expect to reach a satisfac-

Fig. 6. Prediction uncertainties for ∆eqQ of selected bands
and rotational quantum numbers.

tory description of the functional form of eqQ with a re-
duced number of fit parameters, since both the v and the
J-dependence are included in the R-dependence of eqQ.
For this goal one has to discuss the adequate ansatz of
the functional form of eqQ in relation to the molecular
potentials. This is not within the scope of this work.

7 Prediction accuracy by interpolation

The formulae (10–15) permit a precise interpolation of
the hyperfine parameters for rovibronic transitions in the
visible to the near infrared spectral range. The (2σ) pre-
diction uncertainties of the different parameters are esti-
mated to be:

∆eqQ: ±50 kHz, ∆C: ±2 kHz, ∆δ: ±3 kHz, ∆d: ±4 kHz.

To give an overview of the variation of the uncertainties
of the prediction formulae we choose the quadrupole cou-
pling eqQ. Equations (14, 15) allow for a precise prediction
of eqQ parameters in the range v′′ = 0–17 for the ground
state and v′ = 0–43 for the B state. Due to the structure
of the experimental data used for the fit the prediction ac-
curacies for the eqQ parameters depend on the vibrational
and rotational quantum numbers. Figure 6 shows the pre-
diction accuracy for ∆eqQ for different vibrational bands
and for the angular momenta J ′ = 30, 70 and 110. These
specific bands are chosen, because they are the strongest
vibrational bands in the visible spectral range and might
be used for calibration purposes by other people. In gen-
eral, for the considered range the largest uncertainties of
the interpolated ∆eqQ values are observed for high J ′ and
low v′, and the uncertainties decrease with decreasing J ′
and increasing v′. The worst prediction uncertainty is still
less than 50 kHz and on the average less than 20 kHz,
which means about 10−5 relative accuracy.

The uncertainties of the calculated hyperfine split-
ting caused by the uncertainties of the different hyper-
fine parameters vary for different hyperfine components
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Fig. 7. Prediction uncertainties for selected hyperfine compo-
nents of R(J ′′) lines of the 16–2 band. Panel (a): even J ′′,
(b): odd J ′′. Each symbol specifies a selected hyperfine
component.

of one rovibronic transition due to the geometrical factors
gi, (i = eqQ, ...) of equation (2). Especially the influence
of the spin-rotation parameter C increases with increas-
ing angular momentum J . In order to test the prediction
accuracy reached for the hyperfine structure, we investi-
gated, how the hyperfine splittings for different hyperfine
components vary, if the hyperfine parameters are changed
within their prediction uncertainties stated above. These
examinations were performed examplarily for the 16–2 vi-
brational band. The resulting uncertainties are shown in
Figure 7 for different hyperfine components and as a func-
tion of J ′′.

For the hyperfine components F − J = 0 (components
a1, a10 and a15 for J ′′ even, and a2, a13 and a20 for J ′′
odd) the uncertainty is nearly independent of J ′′ and rel-
atively small (≤30 kHz). For the other components the
uncertainty is of the order of 100 kHz for low J ′′ and in-

creases to nearly 1 MHz for J ′′ = 140. The reason for
this is the uncertainty of the parameter C, whose influ-
ence is very small for F − J = 0 components. For the
other components the influence of C increases nearly pro-
portional to

√
J ′′. Therefore and due to their position in

the hyperfine spectra the components a1, a10, a15 for J ′′
even and a2, a13, a20 for J ′′ odd are most suitable for
use as frequency references. For transitions with even J ′′
these components are nonoverlapping lines, which are well
separated from all other components (marked “single” in
Fig. 7), and are located at the low (a1) or high (a15) fre-
quency edge of the spectrum or roughly in the center (a10).
For odd J ′′ these components are in the middle of groups
of three lines, so that the frequency pulling due to over-
lapping line profiles nearly cancels for these components.
The lowest uncertainty (<20 kHz) is found for the cen-
tral F − J = 0 component (a10 for even J ′′ and a13 for
odd J ′′). Therefore, for the calculation of absolute transi-
tion frequencies of hyperfine components F − J = 0 the
contribution to the relative uncertainty due to the inter-
polation of the hyperfine structure by the new formulae
is about 3–5× 10−11, which is an improvement of nearly
two orders of magnitude, as compared with interpolation
formulae reported before.

8 Conclusion

Very precise interpolation formulae for the prediction of
the 127I2 molecule could be derived improving the predic-
tion accuracy for the hyperfine splitting by nearly two or-
ders of magnitude, as compared with the most accurate in-
terpolation formulae published before. This was achieved
for 3 different reasons:

1. extensive systematic measurements on the hyperfine
structure in the NIR,

2. a systematic reanalysis of the literature data available,
leading to a consistent data set for the iodine hyperfine
parameters,

3. the functional forms of the interpolation formulae base
on the physical origin of the different contributions.

For the first time rotational dependences of the ∆eqQ
and ∆C parameters were systematically investigated for
different vibrational bands. Both for eqQX(v′′, J ′′) and
eqQB(v′, J ′) (for v′′ ≤ 17 and v′ ≤ 43) precise interpo-
lation formulae were derived. The quantum number de-
pendences of eqQB and eqQX are successfully described
using expansions for powers of (v + 1/2) and J(J + 1).
In contrast to the magnetic hyperfine parameters, where
the quantum number dependence is nearly completely de-
termined by the mixing with other electronic states, for
the eqQ parameter and for the considered range (v′ ≤ 43,
v′′ ≤ 17) this quantum number dependence is dominated
by the R-dependence of the electrical field gradient q(R)
from the electron distribution.

The range of vibrational levels of the ground state is
much bigger than for former investigations (e.g. [22,23]).
Therefore, in contrast to the formulae as derived e.g. by
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Razet et al. or by Arie et al. our new formulae have to in-
clude also the v′′ and J ′′ dependence of eqQX . Due to the
correlation between eqQX and eqQB for eqQX(v′′ > 0)
this was not possible before. Using the precise measure-
ments of eqQX(v′′ = 14, 15, J ′′ = 1) presented here
we succeeded in separating the vibrational correlation be-
tween eqQB and eqQX . However, the correlation concern-
ing the J-dependence of these parameters could not be
broken so far. This could perhaps be reached analysing
the R-dependence of the eqQ parameters.

Former interpolation formulae presented for ∆eqQ e.g.
by Razet et al., by Arie et al. and by Morinaga are not
suitable for the description of the eqQ parameters in the
NIR spectral range, because these transitions start from
fairly high excited vibrational levels in the ground state
and their formulae cannot describe the variation of eqQB
and eqQX simultaneously. Furthermore, in the formulae
by Arie et al. no rotational dependence of the eqQ param-
eter is considered.

For the first time for low vibrational levels v′′ ≤ 17 a
vibrational dependence of CX was observed and described
by a simple interpolation formula. The variation is neces-
sary mainly to explain the precise data obtained in the
NIR, but it is also significant for an improvement of the
interpolation formulae for ∆C, because the total variation
of CX(v′′) for 0 ≤ v′′ ≤ 17 is a little bit larger than 1 kHz,
which is the prediction uncertainty of CB, where an im-
proved interpolation formula was found for (v′ ≤ 43, J ′).
The restriction in v′ was set, because for v′ > 43 the in-
creasing perturbations due to other electronic states would
have demanded for a much more complicated formula, and
the data amount in the literature is not sufficient for a high
precision description.

For the nuclear spin-spin interaction no rotational de-
pendence was observable, but precise interpolation formu-
lae for the vibrational dependence could be determined.
For the parameters δB and dB the local perturbation in
the range v′ ≤17 due to the crossing 1u state could be
identified and was accounted for in the interpolation for-
mulae. This crossing also produces the predissociation of
the B state in iodine.

With these results a complete set of interpolation for-
mulae for all significant hyperfine parameters for the range
v′ ≤ 43, v′′ ≤ 17 and J ′′ ≤ 200 is available. The use of
these formulae allows to calculate the hyperfine splitting
for the F − J = 0 components with an uncertainty of
20–30 kHz. For other hyperfine components the prediction
accuracy increases nearly linearly with

√
J ′′ from 100 kHz

for J ′′ = 0 to 1 MHz for J ′′ = 150.

For the calculation of recommended transition frequen-
cies with hyperfine components F − J = 0 the relative
uncertainty contribution due to the interpolation of the
hyperfine structure is less than 5× 10−11, but the achiev-
able absolute accuracy depends on that of the pure rovi-
bronic transition frequency. We will report on the predic-
tion of such frequencies applying precise potential curves
in a forthcoming paper [43]. An interactively usable elec-
tronic iodine atlas is already available as software pack-

age [44], applying these new interpolation formulae and
the precise potential functions.

This work was supported by Deutsche Forschungsgemein-
schaft. Discussions with Chr. Bordé, who also showed us his
results prior to publication, are gratefully acknowledged.
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